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A heuristic algorithm for large scale, highly
heterogeneous, constrained container loading

Abstract— Our research aims to optimize container load-
ing operations in logistics operations that use large trucks
to transport goods between logistic centers. We adapted
a heuristics-based algorithm to solve large, highly con-
strained bin-packing problems, to improve the volume ef-
ficiency while ensuring that a large number of constraints
are met. We then use Particule Swarm Optimization to find
the best combination of hyper-parameters in the heuristic
algorithm. Measuring the performance of our heuristic in
a set of scenarios comprising of real cargo data and re-
strictions in the logistics domain, the resulting algorithm
achieved an average volume utilization and computing
time, similar to other state-of-the-art solutions but handling
far more constraints and a larger number of highly hetero-
geneous packages.

Index Terms— Container loading problems, middle mile
logistics, constrained optimisation, large trucks cargo, par-
ticle swarm optimization

I. INTRODUCTION

Container Loading Problems (CLP), sometimes called 3D
packing problems (3DPP), have been extensively used in the
logistics arena to help the workforce carry out packaging
that maximizes volume utilization considering the natural
constraints present in loading processes. Bulk transportation
logistics or middle-mile logistics impose specific conditions
for the application of these techniques, as they are usually
made using large containers (trucks), taking a very high
number of packages with a large degree of heterogeneity in
their sizes, with few stops between warehouses.

The fill rate of trucks is of paramount importance for both
environmental and economic reasons. Loading the cargo into
the truck by stacking/loose loading, which requires human
intervention to introduce the packages and fit them properly,
offers an average container fill rate of approximately 60-
76% by volume. While using pallets with packages to fill the
container is easier and quicker, it only scores at 50% fill rate
on average.

In addition, there is a trade-off between volume usage and
stacking complexity depending on the heterogeneity of the
items to be packed. Some players consider approximately 25
different packaging dimensions (i.e., height = 10cm, width
= 5cm, length = 20cm), but others have many more, such
as Amazon. This fosters research into scenarios with a large
degree of heterogeneity.

Inherently, with the purpose of this algorithm, our intention
is to work on highly constrained realistic scenarios, as occurs
in the middle mile, with large containers (trucks). The di-
mensions of the truck that we are going to use are (cW =
2.45m, cH = 2.45m, cL = 13.6m), which makes a total

volume of 81.6 cubic metres, and is an extreme scenario with
one of the largest containers allowed by European regulation.

Although there are many approaches and solutions to this
problem, most current approaches consider synthetic, small
scenarios with a small degree of heterogeneity and use a
reduced set of constraints. Our contribution is to solve the
offline container loading problem by using a heuristic capable
of handling complex situations in which a large set (at least
300 packets) of highly heterogeneous items must be packed
to meet many constraints into a container to retrieve good
volume usage results in a reasonable amount of time. In
the formulation of our heuristic, we adapted several known
approaches, modified some steps or techniques such as bounds
for constraint satisfaction, randomization or sorting of pack-
ages before packing, and used Particle Swarm Optimization
(PSO) to calculate the hyper-parameters identified in the gen-
eral recursive and constructive strategy, to solve the packing
challenges in highly constrained scenarios.

II. LITERATURE REVIEW

The problem we attempt to solve is part of the family of
combinatorial optimization problems called Container Loading
Problems (CLP). More specifically, we focus on solving, in
a 3D space, a mixture of the single large object placement
problem and the single packet problem defined in [25]. It
consists of two sets of items: one of the larger items C =
{c0, ..., cm}, m ∈ N, the container or containers, and the
other set for smaller items P = {p0, ..., pn}, n ∈ N, the
packets. The objective is to maximize the volume utilization
when packing a certain set of packets (P) in any container
ci ∈ C, i ∈ N satisfying a set of restrictions/constraints,
R = {r0, ..., ro}, o ∈ N. Therefore, by definition, the
problem has fixed limits in the result of its volume utilization,
being [0%, 100%] both the minimum and maximum values of
volume utilization of a container. Furthermore, P must have
a cumulative volume higher than the volume of the container
so that the theoretical upper bound can be reached.

CLP is an NP-hard problem that is usually approached using
heuristics and approximation algorithms. In this particular
application of the problem, its complexity depends on how
constrained it is, that is, how many of the restrictions in R are
active, on the size of items in P for a given volume, and on
the ratio between the cumulative volume of P and the volume
of the container.

Importantly, heterogeneity is highly correlated with the
problem complexity. We consider two packets to be different,
even though they are cuboids, if their dimensions are different
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as defined by [25]. The heterogeneity of the set of packets
increases the complexity and establishes a proportional upper
limit in volume utilization, usually less than 100%, as the
mismatch of the dimensions of a set of packets that must be
stacked in a finite space introduces small cavities that most of
the time cannot be filled with any other packet. When these
remaining spaces are not well distributed and fail to ensure that
there is no fall in the top-height allocated packets, the stability
and compact properties of the solution in its transportation are
inappropriate.

Restrictions are a key element in CLP. There is a subset F ⊂
R of fundamental and necessary restrictions that any instance
or CLP must satisfy. These are the physical constraints implied
by the mutual respect of the physical dimensions between any
pair of packets, thus not overlapping, as it should be physically
impossible; any packet must be within the dimensions of
the container in which it is packed. We can differentiate
between hard and soft constraints [10], [14], [18], [21], [22].
The solution must meet the hard constraints, such as the
fundamental ones F or (R1), (R2), (R3), and (R6), but not
necessarily the soft ones.

Below is a summary of the constraints commonly consid-
ered in this context:

• Weight limit (R1): maximum tonnage allowed by regula-
tion in the entire container and its slices.

• Weight distribution (R2): Weight distribution along dif-
ferent axes of container. We set specific limits as in [22],
[21] and [4], in which the mass center must be located.
In our case, the center of mass must be within a stricter
range, that is [0.3 ∗ cW , 0.7 ∗ cW ], [0.3 ∗ cL, 0.7 ∗ cL],
[0.0 ∗ cH , 0.5 ∗ cH ] being cW , cL, cH the width, length
and height of the container, respectively.

• Loading priorities (R3): Some items have priorities,
meaning that they must have a preference over others
with lower priority if there is no space for all.

• Orientations (R4): packets can only be assigned to certain
orientations or to all. For example, a TV set is not allowed
to be oriented with the screen side aimed at the floor or
roof of the container.

• Stacking (R5): Packets can support others, depending on
their fragility and weight. We considered a regular packet
able to support others with the same weight, and that is
only able to support half its weight.

• Dangerous items (R6): Some items have special regula-
tions because of their dangerous consideration. In this
case, normative implies that they must be in specific
positions near the rear of the container.

• Multi-drop situations (R7): Distribute packets along the
cargo considering the distribution route.

• Stability (R8): Stacked packets must have a minimum
part of their area supported. In our worst-case scenario
we considered a minimum supporting area of 75% of the
base.

We added two new restrictions not found in the literature
to cope with packages containing part of an entire unit:

• Complete Shipment (R9): Packets may be part of a set
that must be shipped together.

• Relative positioning (R10): Some items must be loaded
close to others to improve the multi-drop situations.

As mentioned, CLPs have been in the air for many years.
One of the most common approaches to solving CLPs is to
use mixed-integer linear programming (MILP), such as in [3],
[17] which restricts some or all decision variables to integer
values or within specific bounds [11]. As in [8], [16], [19],
these approaches do not achieve good results with more than
the fundamental constraints simultaneously on instances with
more than 20 items. In addition, besides the fact that some
of these realistic constraints and their combinations are very
difficult to formulate using an MILP approach. Others such as
[22] and [21] take into account (R2), (R7) and (R8) formu-
lated with MILP and added to the fundamental constraints on
instances between 90 and 110 weakly heterogeneous elements.

Therefore, the literature shows that if we want to target
weakly and strongly heterogeneous instances of average-
low weight/volume packets using MILP, we will suppose
an exponential complexity that significantly affects the time
performance. In fact, there are some official software such
as GUROBI to formulate this type of problem with MILP
and other commercial solutions such as EasyPack that only
consider (R1), (R5) and (R4).

In recent years, there has been a varied use of heuristics
and metaheuristic implementations: [5] used Genetic Algo-
rithms (GA) and reported to handle up to 100 packages of
10 different types; [2] used Greedy Randomized Adaptive
Search Procedure (GRASP); [27] used Variable Neighborhood
Search; [15] used PSO; [26] used Deep Reinforcement Learn-
ing, for example [28] focused on stability, considering no other
restrictions, and validated the approach by means of a robot
installation, reaching a range of 50 packages; and others, such
as [10], used constructive heuristics. We found the largest set
of packages handled in [12] that deals with the multiple bins
balance problem and reports experiments up to 200 packages
per bin; the stack the packages in 3 levels but in contrast to
our proposal they only handle 3 types of different packages
and do not consider other restrictions than the basic ones.
The authors have described different approaches and steps in
these sets of solutions; for example in [1], [20], [29] stated:
stack building, horizontal layer building, block building, wall
building, guillotine cutting, sequencing and improvement. An
in-depth analysis of these solutions can be found in [1] and
[7]. Most of the cited works generally consider constraints
individually [8] or a small set of constraints [2], [18]. Recent
contributions, such as [10] have begun to address a more
extensive set of them simultaneously and implement them in
real scenarios.

Our approach is designed to handle all the constraints
mentioned before, all which are enforced as hard, except for
(R7) where we allow a low number of unloading obstacles.
Compared with the literature only [10] handles the same
number of constraints. Therefore, our heuristic takes it as a
framework, modifies it and combines some other approaches,
making a new logic out of these modifications and using
PSO [24] to improve the results.
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III. THE ALGORITHM: STEPS AND RESTRICTIONS

Our method, inspired by [9], is named a Recursive Greedy
Randomized Constructive Heuristic (RGRCH), which incor-
porates particle swarm optimization to fine-tune the heuristic
parameters tailored to different scenarios.

This approach is called greedy because it uses multiple local
fitness functions across various modules and stages. These
functions, optimized using PSO, aim to minimize a global cost
function that is inversely related to the efficiency with which
the volume is utilized within the container. Randomization is
used to shuffle packets after they have been sorted, which
yields variability in the solutions. The process is constructive
as it builds a solution incrementally for the given data set of
packets, P .

The constructed solution, S, evolves through a sequence of
steps, S = s0∪s1∪ ...∪st where t = |Pp|−1 and each step,
s, marks the addition of a packet to the solution. Starting with
an empty container, s0, corresponds to the first packet being
added, and each subsequent step represents the inclusion of
an additional packet, cumulatively building the packed set.

The algorithm recursively calculates multiple solutions and
selects the optimal one Sbest that maximizes volume utilization
while satisfying all imposed restrictions, R. This optimal
solution is chosen from the set of iterative solutions, AS =
{S0, ..., Sn}, which can be feasible and infeasible solutions,
as has been reported in other studies in the literature [2], [8],
[22].

Figure 1 shows an overview of the stages, modules, and their
corresponding interactions, referenced by numbers in order.
We sequentially go over each of these modules.
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Fig. 1. RGRCH-PSO overview.

Part of the novelty of our heuristic lies in its ability to
perform well in highly constrained scenarios, supporting all
constraints. These constraints can occur simultaneously and
affect volume usage, usually with an inverse relationship
between the number of active constraints and their intensity,
volume utilization, and percentage of feasible solutions. [8]
demonstrated this, their work tests one by one all the practical
constraints formulated with an integer linear programming
approach, also stating that all practical constraints, except for
multiple orientations (R4), reduce the volume when applied.

The starting data are a set of packets, P , which have at
least the cumulative volume of the container and are sorted
according to the scenario characteristics and constraints. The
data set that must be packed is passed to the algorithm. As

the algorithm builds the solution, the data set will split into
two and will refer to the set of boxes which have already
been sorted and randomized and are waiting to be packed Pq ,
and a set of packets already packed Pp, where Pq, Pp are
disjoint, and its union forms the scenario data set P = Pq∪Pp.
The packing algorithm will be picking packets from Pq and
introducing them into Pp with in the beginning as Pp = ∅.

a) SORTING: Sorting has shown to be a crucial step in
achieving constraint satisfaction and better packing solutions.
It has been used through methods such as non-increasing
volume sorting by [23] and criteria-based decreasing sorting
by [10] focusing on priority and multi-drop constraints in
warehouses.

Considering a set of packets P with properties
Prioritymax ∈ {0, 1}, Wmax, Vmax represent the
maximum priority, weight, and volume of packets in P
respectively, and D = {d0, ..., dn−1}, n = |D| is the
number of destinations. For each packet, pi characterized
by (wpi , vpi , ppi) as their weight, volume and priority
respectively, and dcpi

∈ {0, ..., |D| − 1} as the destination
code inside the route, the fitness function is:

Fitnesssort =

((
vil
Vmax

· 0.5 + wi

Wmax
· 0.5

)
· α

+
pi

Pmax
· β

)
+ (d− dci)

(1)

Based on this function, P was sorted as P ′ = {p′0, .., p′n}
where p′0 achieves the highest score and p′n the lowest. The
parameters (α, β), adjusted PSO balance the influence of the
weight and volume. This holistic approach not only normal-
izes packet characteristics within the dataset but also aims
to implement a last-in-first-out (LIFO) sorting strategy for
efficient packet handling across multiple warehouses, thereby
minimizing the separation time at destinations. The unified
treatment of weight and volume through alpha simplifies the
PSO dimensionality by integrating previously isolated factors
into a comprehensive fitness function.

The sorting is aware of multi-drop (R7) so the first packets
in the queue correspond to the last customer on the route, good
clustering of destinations minimizes the time spent moving
packets from other destinations when the unloading of cargo
from a certain destination, these are called “unloading object-
s/obstacles”. The algorithm complies with relative positioning
(R10) using a similar logic to the handling of (R7), but instead
of destination codes with relative positioning codes.

b) RANDOMIZATION: Research in [13], [2], and [10]
proved the importance of randomization in iterative algo-
rithms. Our implementation mirrors these approaches but
imposes stricter constraints on the similarity between items
being swapped. For a sorted set of items P ′ = {p′0, ..., p′n},
the randomization process consisted of three phases:

1) Volume swap: An item p′j may swap with its consecutive
p′j+1 with 50% chance if their volume ratio vij/vij+1

∈
[0.85, 1.15] and have the same destination code.

2) Weight swap: this occurs between consecutive items
with 50% chance if their weight ratio wij/wij+1 ∈
[0.85, 1.15] and have the same destination code.
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3) Priority swap: Items may swap with a 50% chance
if they have identical priorities, their weight ratio
wij/wij+1 ∈ [0.85, 1.15], volume ratio vij/vij+1 ∈
[0.85, 1.15] and have the same destination code.

This selective swapping reduces unloading complications
by maintaining localized item grouping per customer or ware-
house. A priority-based swap is conditional and is applied only
when the dataset contains priority items, reinforcing the need
for adaptability in our recursive heuristic, which is crucial
for evolving solutions across different iterations and algorithm
instances.

c) GENERAL CONSIDERATIONS IN THE LOADING STAGES:
Regarding packet insertions Fig. 2 demonstrates the adaptation
of the Extreme Points Strategy (EPS) from [6], which is
commonly used in packing algorithms. This method involves
initializing the first packet at the Base Left Front (BLF) of
an empty container c at (0, 0, 0) and subsequently inserting
packets at extreme points created by earlier placements.
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Fig. 2. Extreme Points Modification.

In the original EPS, each new packet insertion at the BLF of
the container generates three new PPs: Base Left Rear (BLR),
Top Left Front (TLF), and Bottom Right Rear (BRR). If the
BLR or BRR lacks direct support, these points are projected
onto the nearest vertical surfaces. Our adaptation introduces
the concept of an insertion vector, illustrated in Figure 2, which
projects from the corner of a packet at an extreme point (EP)
to its mass center. Our contributions are:

• Positive to Negative Insertion Mode: Insertion vector
direction changes from positive ⟨+x,+y,+z⟩ to negative
⟨−x,+y,+z⟩ if the PP is located within a certain width
range, from ThWmin to the container’s maximum width
(cW ), adjusting the packing strategy based on the packet’s
position relative to the container’s dimensions.

• Height Considerations: If the PP is near the container’s
top (cH ), subsequent packet insertions may not generate
feasible upper EPs as TLF or Top Right Front (TRF).

• Width Adjustments: When the PP is within ThWmin

but not near the container’s top, the next insertion might
generate a Bottom Right Rear (BRR) instead of a Bottom
Right Front (BRF), promoting configurations that facili-
tate negative mode insertions.

Handling during loading Stacking constraint (R5) requires
packets to be stacked from the heaviest at the base to lighter
ones above, regardless of the presence of “fragile” packets.

The vertical center of mass of the packed solution Pp must
not exceed half the container’s height (R2), and the mass
center on the transverse and longitudinal axes should stay
within specified limits from the geometric center (detailed in
Section II). The base area of each new packet must cover at
least 80% of the top area of the underlying packets during the
“Load-1” (L1) stage and 75% in the “Load-2” (L2) stage, with
an average coverage of 90%.

Our heuristic addresses constraints (R9) and (R10), which
have not been addressed in the literature. Packets with different
“productId” may be a standalone products or belong to a larger
within P , denoted by its “subgroupId”. A subgroup there
may contain one or many packets with different “productId”s.
The feasibility of Pp depends on the inclusion of all packets
from each subgroup, which complies with complete shipment
constraints. In the re-sorting, L1, and L2 stages, priority is
given to unpacked items from subgroups with several items
already packed, following the initial sorting and “Load base”
(LB) stage. The priority under constraint (R3) is binary, with
packets marked as 1 for priority and 0 otherwise. By the end
of the processing, Pp will include all prioritized packets.

d) LOAD BASE: The Load Base (LB) phase is designed
to establish a stable foundational layer of packets, known as
the base, where packets are laid flat without stacking. This
base is crucial as it sets the stage for meeting the constraints
in the subsequent loading phases and ultimately in achieving
the desired final configuration. Initially, this approach replaced
three distinct phases that were previously aimed at maximizing
stacking, which often led to the propagation of errors in highly
constrained environments. This revised method aligns better
with successful strategies noted in full construction models
such as those in [10], particularly under stringent constraints.

One of the significant advantages of the LB phase is the
effective exploration of all potential combinations of the initial
horizontal layer of packets within a reasonable timeframe. This
is facilitated by subdividing the container into subzones, which
is essential for managing the weight distribution constraints
((R2)) and adhering to the weight limit constraints ((R1)). The
configuration of these subzones varies depending on the mode
of transport and nature of the load, typically distributing the
total legal weight limit equally among the four subzones. Both
(R1) and (R2) must be satisfied for solution feasibility.

The process begins by placing the first packet from Pq , pq0 ,
into a selected extreme potential point from set E, which is
updated dynamically with every packet insertion. The insertion
point ei ∈ E used for pq0 was then removed, and new potential
points were generated as Epq0

. In this phase, the algorithm
assesses the feasibility of each insertion and evaluates it by
using a detailed fitness function. The procedure involves:

1) Select the nearest potential point ppe to the front of
the container or, in a tie, closest to the container’s
width extremes to minimize unutilizable small gaps by
consolidating them into larger, more useful spaces.

2) A partial insertion test for each packet in Pq across all
feasible orientations amounting to

∑i=|Pq|
i=0 pqi ∗ Opqi

potential insertion checks.
3) If a packet cannot be feasibly inserted in any orientation,

it returns to Pp. If a feasible orientation was found, the
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insertion was scored using a fitness function.
4) The fitness function, detailed in Equation 2, integrates

several factors:

Fbase =
wpq0

WPmax
·ϵ+

(
1−

zmcpq0

cL

)
·ζ+priopq0

·η (2)

where wpq0
is the weight of the packet being inserted,

WPmax is the maximum packet weight in the set, zmcpq0
is the z-coordinate of the packet center of mass, cL
is the container length, and priopq0

is the priority of
the packet. The coefficients ϵ, ζ, and η are determined
through the PSO process, reflecting the relative impor-
tance of the packet weight, its proximity to the front of
the container, and its priority, respectively.

The hard constraints are meticulously adhered to, with
the multi-drop ((R7)) constraint explicitly addressed in this
phase. For multi-destination datasets, the base area is allocated
proportionally to ensure fairness and minimize the Mean
Absolute Percentage Error (MAPE) between the theoretical
and actual packed areas, aiming for an MAPE of less than
15%.

e) RE-SORTING: This phase employs the same sorting
function as the initial sorting phase, but with different coeffi-
cients (γ, δ) instead of (α, β). Re-sorting the packets in Pq ,
results in a new order that prioritizes packets from subgroups
that must be shipped completely, complying with the complete
shipment constraint. Packets from Pp that belong to these
subgroups and have corresponding items in Pq are given higher
priority if they are not already prioritized. This adjustment
directly influences the ability of the algorithm to produce a
greater number of feasible orientations, as shown in Eq.( 1).

f) LOAD-1: The Load-1 (L1) phase builds on the foun-
dational setup completed in the Load Base (LB) phase. Here,
Pq consists of packets not yet packed and resorted, while Pp

includes those positioned on the container’s floor, which have
generated potential points divided by destination into E =
Ed0

+Ed1
+Ed2

. In contrast to LB, L1 attempts to insert each
packet from Pq into every applicable potential point within the
same destination, resulting in a substantially increased number
of placement evaluations:

∑i=|D|−1
i=0 pqdi ∗ Edi .

The insertion process assesses the fit of each packet against
all potential points for all applicable constraints, as in LB. Suc-
cessful insertions were evaluated by using a fitness function to
determine the best placement. This process also generates new
potential points using the extreme points projection technique,
as illustrated in Figure 3.
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Fig. 3. Extreme Points Projection.

The fitness function for L1 optimizes the placement of each

packet, defined as follows:

F1 =

(
1−

∥cO −mcpq0
∥

cL

)
· θ + Scond · ι

+

(
1−

∣∣∣∣1− Apq0

Appn

∣∣∣∣) · κ

+

1−

(
wpq0

WPmax
− 0.5

)
0.5

·
ymcpq0

cH

 · λ

+ priopq0
· µ

(3)

• Origin Attraction: The first term prioritizes placing
packets closer to the container’s BLF, rather than just
towards the front. The items are tightly packed in the
most central and stable part of the container, enhancing
stability and order, especially in cases where items vary
greatly in size and shape.

• Surrounding Condition: Scond measures the proximity
of the top nearest items to mcpq0

, rewarding configura-
tions in which these items belong to the same destination.
This strategy minimizes the “unloading obstacles” by
clustering items destined for the same location.

• Area Condition: This promotes stacking of packets that
have similar top and bottom areas, optimizing the match
between Apq0

and Appn
. A great match enhances the

structural integrity, which is critical for the stacking
stability as noted in [10].

• Height-Weight Relation: By adjusting the placement
based on the weight of items relative to their height in
the container, this term helps maintain a balanced weight
distribution across the container’s height, which is crucial
for both safety and practical stacking strategies.

• Priority Handling: The final term ensures that high-
priority items are placed preferentially.

After L1, most packets are packed, preparing for the next
phase, Load-2 (L2), with the container’s state updated and
potential points set to continue refining the insertion process.

g) LOAD-2: The Load-2 (L2) phase aims to maximize
container volume utilization by placing previously discarded
packets in unfilled spaces. These spaces often remain empty in
the Load-1 (L1) phase because they do not explore all possible
item orientations during the insertion process, unlike in the LB
phase, owing to the computational scalability.

Before transitioning from L1 to L2, we transform the
set of PPs based on the current state of the container and
positions of the already loaded packets. This introduces a new
set of PPs derived from items whose BRR falls below the
threshold ThWmin (and their projections). This adjustment
allows the consideration of new insertion possibilities that
were not identified in L1, optimizing for potential orientations
and placements that were previously overlooked owing to
computational constraints in L1, which deals with a larger
subset of packets in Pq .

In L2, the remaining packets in Pq , that have been re-
sorted and rotated into feasible orientations, are considered
for insertion. By exploring alternative orientations, L2 can
effectively utilize spaces that L1 can not fill. The process in
L2 follows the same workflow as L1 but adjusts the fitness
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function parameters (θ, ν, ξ, ρ, σ) to better suit the different
focus of this phase, which is to fill gaps left by the initial
packing process as outlined in Formula 3.

IV. VALIDATION

To train and test our algorithm, we used a data set of 20444
packets crawled from public webs of real-world companies
(with 6727 unique dimensions and weight)1, and containers
of standard width cW = 2.45m, height cH = 2.45m, and
length cL = 13.6m). We created test scenarios by creating
random partitions of the data set with a cumulative volume of
approximately 110% of the container volume. These partitions
ranged from 190 to 530 packets.

The design of our algorithm rendered 17 hyper-parameters
to be tuned, which are the coefficients of the fitness equations
described in the previous section. Searching for such a large-
dimensional space makes an exhaustive search unfeasible. An
analytical solution may not be possible because it will depend
on scenario characteristics. Therefore we resorted to Particle
Swarm Optimization [24] to obtain a set of parameters that
maximize volume utilization in specific scenarios.

We configured the PSO with a population of 34 particles,
initialized at random positions in the search space. The al-
gorithm runs 200 iterations, far more than required as in our
experiments we observed that the solution converges in the
range of 100 to 150 iterations.

We defined four scenarios to run the optimization, with each
set of packets that sum up the 115% of the container volume,
that is, approximately 400 packets per scenario (70% unique).
In addition, we ran the optimization in reduced versions of
the scenarios, reducing the number of packets to 90% of
the container volume. These scenarios are easier to compute
because there are fewer packets, but the penalty for not
inserting a packet is higher, as there are also fewer packages
to substitute. We ran the optimization three times per scenario
to avoid possible outliers.

Figure 4 shows the parameters computed for E1 scenario
(others scenarios are similar), where each line represents one
parameter set, and its color matches the quality of its solution.
Base scenarios led to an average volume utilization of 79.29
%, with a std of 0.02. The reduced scenarios obtained worse
results, as expected, with an average volume of 76.70 % and
a std of 0.06.

The first insight obtained from this experiment is that small
variations in parameters values do not have a strong impact
on the solutions obtained (the algorithm does not seem to be
very sensitive to the parameters). The green lines in the figure
indicate that the parameter values may vary over a range and
yield the same score. In addition, because the parameters are
weights in the fitness functions and these functions are used
to compare and rank the algorithm decisions, proportional
sets of parameters will yield proportional fitness scores, and
consequently, the solutions will be the same. Considering this
fact, we compared the optimization results by measuring their
cosine similarity, because that metric is not affected by the

1The dataset and script used to generate and personalise instances is
available at(XXXXXXXX).

vectors’ magnitude, only by their direction. The average cosine
similarity in the case of the basic scenarios is 0.90, with
std 0.06. Therefore it can be concluded that these sets of
parameters are valid for general scenarios. The final values
of the parameters are listed in Table I. However, comparing
these solutions with those of the reduced scenarios, in some
cases their similarity decreased to 0.73.

Sorting & Resorting Load 1 (L1)
α β γ δ θ ι κ λ µ

0.23 0.01 0.70 0.86 0.55 0.30 0.92 0.92 0.33
Base (LB) Load 2 (L2)

ϵ ζ η ν ξ ρ σ τ
0.17 0.80 0.76 0.34 0.75 0.37 0.60 0.79

TABLE I
OBTAINED PARAMETERS

After the PSO findings, we performed 30 experiments with
different characteristics using the weights in Table I. Their
characteristics and results are presented in Table II, where the
percentage of the container’s used volume “% UV” achieves
a mean of 74,06%. For all packets “P” the number of items
packed is “nP” and those discarded are “nD”. Although the
instances are large, the computation time for 64 iterations
(shown in the “t(s)“ column) of the same instance averages
124s, which is in line with the requirements of logistics appli-
cations. “MD” and “mD”, are the maximum and minimum
physical dimensions in centimetres of the set of packets,
with “MW” and “mW” showing the analogous for weights
in grams. The percentage of over-volume of the instance
with respect to the volume of the container is presented with
“%oV”, which means that for a certain scenario in which
we have 80 cubic meters of container, the packages dataset
will have a 96 cubic metres in total, showing how much
the scenario is stressed. The number of destinations is “dst”.
In terms of heterogeneity, the percentage of unique packages
that only consider dimensions is indicated in “%pU” with a
mean value of 73%. Similarly, the percentages of subgroup
and priority packages are indicated in “%pG” and “%pP”,
respectively and the number of unloading obstacles in “uO”.

The importance of the constraints was noted in the volume
utilization results. Our algorithm achieves 76,2% volume uti-
lization with less than 1% of unloading obstacles in multi-drop
scenarios, with all the soft and hard constraints satisfied if ac-
tive. In addition, it can handle large and highly heterogeneous
instances with a mean computation time per instance of 124 s
on the machine mentioned above. Considering that this is an
extreme scenario in terms of container size, our computation
time is potentially feasible for the fast-paced operations of
logistics companies.

As a brief analysis of the results, the decrease in volume
utilization can be seen as the number of destinations increases
because the algorithm deals with the unloading obstacles in a
radical way. This behaviour was expected because the main
focus area of the algorithm is transportation both inside the
first and middle miles, and trucks usually do not make more
than three stops. Taking this into account, if we only consider
three destinations, the mean volume utilized is 77.8% and in
the case of two destinations it is 79.6%.

This algorithm can compute highly constrained scenarios
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Fig. 4. Best parameter set of each PSO iteration for scenario E1.

i %UV P nP nD t(s) MD mD MW mW %oV dst %pG %pU %pP uO
0 75.1 445 325 120 126 225 20 120 0.2 15 2 3 87 8 0
1 62 519 287 232 50 214 20 145 3.1 10 5 0 73 0 4
2 80.6 651 386 265 299 255 15 204 3.1 15 1 14 75 0 0
3 78.5 627 422 205 210 250 15 204 2.1 10 3 2 84 10 4
4 76.4 461 290 171 84 207 25 204 3 12 4 5 70 4 0
5 77.7 519 338 181 135 214 20 145 3.3 12 2 0 75 0 2
6 76.6 359 236 123 24 205 30 145 4.8 16 4 4 67 10 0
7 75.3 453 270 183 89 207 25 204 3.7 18 3 7 66 8 0
8 82.9 654 403 251 491 250 15 99 2 8 1 4 81 13 0
9 77.6 313 215 98 49 200 35 145 6.1 14 3 3 64 8 2
10 73.8 357 243 114 63 200 30 145 3.7 13 3 3 65 10 1
11 80.5 523 319 204 189 214 20 204 2.5 13 2 4 72 9 2
12 76.3 357 249 108 88 200 30 145 3.7 13 2 3 66 9 2
13 75.2 460 294 166 65 207 25 204 3.8 20 5 5 68 12 2
14 74.3 619 488 131 381 250 15 204 2.3 13 1 0 78 0 0
15 84.1 516 318 198 182 214 20 204 2.4 13 1 3 76 7 0
16 75 315 214 101 39 255 15 120 0.2 18 4 4 88 13 3
17 67.2 613 429 184 71 255 15 120 0.2 18 4 4 88 13 4
18 82.1 451 297 154 138 202 25 204 3 17 2 5 66 9 0
19 74.3 312 206 106 31 202 35 204 6.1 14 5 3 63 13 3
20 76.5 358 235 123 40 204 30 145 3.7 15 5 3 66 10 1
21 74.1 469 338 131 92 225 20 120 0.2 15 3 2 89 8 1
22 79.6 502 320 182 178 209 20 99 3.5 5 2 4 73 11 1
23 80.8 522 333 189 86 214 20 145 2.6 14 2 0 70 11 1
24 75 652 424 228 176 205 15 136 2.2 9 4 3 80 9 2
25 80.8 312 225 87 72 202 35 204 6.6 17 2 3 62 10 0
26 68.3 519 310 209 85 211 20 88 3.1 6 4 0 73 0 2
27 68.9 519 285 234 85 214 20 136 3.1 14 3 0 76 0 7
28 73.1 462 292 170 45 204 25 120 3.1 15 3 6 66 8 1
29 80.2 501 329 172 81 211 20 136 3.1 9 2 4 73 8 0

TABLE II
EXPERIMENTS RESULTS (YELLOW FOR HIGHEST VALUES AND BLUE FOR LOWEST VALUES IN COLUMN)

that no other than [10] have explored. Nevertheless, the size
of the instances averages 79 packages with a maximum of 442
packages in their work whereas ours averages 478 packages
and 651 as maximum. Regarding heterogeneity, in their case
they explore instances with a maximum of 130 different
types of packages whereas we have instances with up to 539
different package types.

However, we must consider that the weights of the fitness
functions have not been specifically calculated for these sce-
narios, but rather for the best results for the full set of all
scenarios presented in this article. In fact, some future lines
of work would be to make matching classifications between
weights and the main characteristics of scenarios, so that each
type of scenario (i.e. having 200 vs 300 packages) has different
weights in its fitness functions.

V. CONCLUSIONS

Our work was motivated by the existing opportunity to
optimize cargo loading in complex scenarios. Our heuristic
algorithm leverages and improves the previous proposals in
the literature on CLP problems, and achieves good results in
highly constrained scenarios, with a large number of packages
and high heterogeneity on a large container, as in middle-mile
logistics.

The structure, phases, and local functions exposed in this
study propose a new way of optimizing volume while hav-
ing up to ten types of constraints active. The inclusion of
PSO enhances the rigor and precision of the local objective
functions and connects them from a holistic perspective. Our
experiments showed maximum volume utilization of a 84.1%
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with an average of 76.70%.
The results obtained meet the objective of creating a

heuristic capable of computing instances with more packages,
especially with more unique items (high heterogeneity) than
the state-of-the-art solutions in this field, while handling as
many constraints as the best current work within an industry-
feasible computing time, even with a more transparent and
quantified intensity of the constraints present in the datasets.
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